

WHITE PAPER

Security and openMosix

Securely deploying SSI cluster technology
over untrusted networking infrastructure

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 2 of 24

CONTROL PAGE

Document Approvals
Approved for Publication:

Author Name: Ian Latter
 8 December 2003

Document Control
Document Name: Security and openMosix; Securely deploying SSI cluster

technology over untrusted networking infrastructure
Document ID: white paper - security and openmosix.doc-Release-1.2(257)
Distr ibution: Unrestricted Distribution
Status: Release
Disk File: C:\Documents and

Settings_.NULL\Desktop\whitepaper\White Paper -
Security and openMosix.doc

Copyr ight: Copyright 2003, Macquarie University

Version Date Release I nformation Author /s

1.2 08-Dec-03 Release / Unrestricted Distribution Ian Latter

1.1 06-Dec-03 Draft / Uncontrolled Ian Latter

1.0 05-Dec-03 Draft / Uncontrolled Ian Latter

Distr ibution

Version Release to

1.2 Public Release

1.1 Macquarie University, Moshe Bar, Bruce Knox, Wim
Vandersmissen, David Conran

1.0 Macquarie University, Moshe Bar, Bruce Knox, Wim Vandersmissen

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 3 of 24

Table of Contents

1 OVERVIEW..4

2 GOOD, BUSINESS SENSE. ..5

2.1 WHAT IS AN “SSI”?..5
2.2 WHY WOULD I WANT AN SSI?..5
2.3 VISIBLE SSI DEPLOYMENT METHODOLOGIES..5
2.4 THE GREAT ROI HEIST ..6
2.5 ALTERNATIVE DEPLOYMENT METHODOLOGY FOR SSI IN TODAY’S ENTERPRISE..................6

3 COMMON, TECHNICAL SENSE. ..8

3.1 HOW OPENMOSIX COMMUNICATES ...8
3.2 HOW OPENMOSIX MAINTAINS ITS NODE DATABASE..8
3.3 HOW OMDISCD OPERATES..9

4 WHERE THE PROBLEMS ARISE ...10

4.1 WHERE TO PLACE TRUST?...10
4.2 IMPLEMENTATION VULNERABILITY (NODE VULNERABILITY) ...10
4.3 NETWORK AUTHENTICATION (CLUSTER NODE ADDITION)..11
4.4 NETWORK CONFIDENTIALITY AND INTEGRITY (CLUSTER COMMUNICATIONS)....................11

5 MOVING FORWARD – MITIGATING THE RISKS...12

5.1 WHAT IS CHAOS?...12
5.2 WHAT IS CLUSTERKNOPPIX?...12
5.3 REDESIGNING THE AUTO DISCOVERY PROCESS (TYD) ...12
5.4 IPSEC (NETWORK LEVEL ENCRYPTION AND AUTHENTICATION) ..14
5.5 ESTABLISHING AN “ INSIDE” AND AN “OUTSIDE” (DEFINITION) ...15
5.6 IMPLEMENTING “INSIDE” AND “OUTSIDE” (PACKET FILTERING) ...17
5.7 USING A FULLY-MESHED VIRTUAL TOPOLOGY ...19
5.8 PUTTING IT TOGETHER – ROLLING YOUR OWN ...20

6 CONCLUSION ...21

7 REFERENCES..22

7.1 PAPERS / PRESENTATIONS..22
7.2 DISTRIBUTIONS..22
7.3 SOFTWARE ...22
7.4 FEAR, UNCERTAINTY AND DOUBT ...23

8 CONTACT ..24

8.1 ADDITIONS, MODIFICATIONS AND DELETIONS...24
8.2 CONSULTATION..24

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 4 of 24

1 Overview
The pinnacle of success for any Single System Image (SSI) based cluster, should be
the achievement of a global deployment on commodity x86 computing equipment;
leveraging both the public communications infrastructure and existing capital
equipment (personal computing) expenditure.

In this white paper we will explore the openMosix network architecture, network level
risk mitigation techniques for the redeployment of organizational infrastructure in
“open” clusters, a practical application of those techniques in the CHAOS and
ClusterKnoppix Linux distributions, and proposals for extending both the security
model and the flexibility of the openMosix architecture.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 5 of 24

2 Good, Business Sense.

2.1 What is an “ SSI” ?

An SSI is an acronym for a “Single System Image” . It is a term used to describe a
type of cluster technology that aims to create a large system that transparently consists
of an enumerate quantity of smaller systems; the infrastructure equivalent to a fractal.
The alternative cluster technology is Beowulf, which involves a Parallel Computer
Emulation software layer being applied to an enumerate quantity of computer
systems.

The primary difference between the two technologies is the focus. Beowulf creates a
powerful parallel-capable cluster, on which application developers can write
applications specifically for the cluster. SSI concentrates on extending the
functionality of a single computer out into the cluster in a way that allows existing
applications to operate without modification, but allowing them to take advantage of
the additional resources as though they were local to a single host.

Note that while openMosix is not a true SSI, its trust model does operate as an SSI
would.

2.2 Why would I want an SSI?

A true Single System Image runs unmodified software, on component hosts (or nodes)
that are treated as dynamic resources. In this way, an SSI can provide availability,
scalability and manageability to shrink wrapped or black box software.

Imagine having the ability to manage ROI by dynamically allocating and recalling
hardware resources that are assigned to a single “virtual server”? Or, imagine having
the ability to manage TCO by consolidating hardware resources into live pools
(clusters), ready for mission critical application deployment? Further, imagine being
able to align infrastructure expenditure to budgetary cycles, by upgrading one third of
a virtual asset, per annum, over three years (or one twelfth over 12 quarters)?

What economically competitive information-age organization would not want SSI
technology?

2.3 Visible SSI Deployment Methodologies

Publicly, the typical cluster deployments have been by organizations with either
permanent, heavy and dedicated processing interests, or organizations with very small
and temporary interests (even down to those who are just having an inquisitive look-
see).

Technologically, this translates to organizations either running dedicated computing
hardware and other permanently allocated resources (usually racks of current Dell,
Compaq/HP or IBM hardware maintained in larger organizations), or those who have
back-ended existing resources to provide the SSI as a secondary function (desktop
PCs running Linux with X-Windows that are also part of a “background” SSI in
smaller organizations or organization silos).

Neither of these methodologies is appropriate for the modern enterprise. The latter is
immature, introducing a number of additional information and resource management

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 6 of 24

issues into the personal desktop; not the least of which is the insurmountable task
(cost, or irretrievably lost investment) that most organizations would face in replacing
the Microsoft Windows desktop and SOE interface with another. The former fails to
maximize an organization’s existing capital computer investments while further
damaging its ownership costs, by abandoning existing computing infrastructure, and
introducing yet another environment that requires its own upgrade path and shiny new
components.

This paper discusses a third deployment methodology that has not been well explored.

2.4 The Great ROI Heist

The modern enterprise has an abundance of processing power held captive in its PC
desktop investment.

Organizations make a one to five year PC asset investment based on a processor
intensive workforce that operates for 9hours per day, 5 days per week – or, a total of
45hrs/wk for an asset that is technically available for 168hrs/wk. To put it bluntly, the
sum of any organization’s PC investment strategy – its support, training, operational
costs, process streamlining, systems management, etc ad nauseam – have all gone into
acquiring and maintaining that PC asset for a 100% of its “useful” life, which amounts
to a little more than 25% of its operational life.

So, while a given organization may present a 24x7 face, it has a massive and unused
capability that is waiting for 8am tomorrow morning. Therefore, there remains an
opportunity to increase the ROI of the enterprise PC asset by as much as 300%.

Stealing this untapped asset is the foundation of the third deployment methodology.

2.5 Alternative Deployment Methodology for SSI in Today’s Enterprise

Recall that one of the fundamental advantages of an SSI is its ability to dynamically
add and subtract system resources, to or from the cluster pool. An SSI can be as small
as a single node (host) or as large as tens of thousands of nodes. However, it’s the
SSI’s ability to dynamically “grow” and “shrink” that allows the enterprise to
completely waive the cluster’s (virtual server’s) bounding parameters, by deploying
the SSI cluster with a single dedicated PC resource – a home node.

By having the enterprise’s existing and available PC resources shutdown and reboot
to an SSI node configuration, at a scheduled time, the home node will appear to grow
in capacity, to the scale of the number of PC resources that are added to the cluster, at
that time.

Depending on the scale of the enterprise, this can have two benefits;

1. Always-On SSI Cluster: aka “The Follow-the-Sun Supercomputer”

Many global organizations are already providing services on a follow-the-sun
basis. Dividing the world into three time slices, their regionalization strategy
allows them to leverage operational staff in their regular office-hours in their
local time zone, each providing 8hours of global service.

In the same way, the other two zones are outside of office hours – leaving their
PC infrastructure free to dynamically support the designated SSI’s. While

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 7 of 24

only the home node(s) will remain permanently allocated to cluster(s), in this
model, the cluster(s) will be permanently enabled at a maximum capacity.

2. Batch Capable SSI Cluster: aka “The 5-9 Supercomputer”

Organizations that exist in a single time zone will not be fortunate enough to
support a permanently populated SSI’s using their PC infrastructure.
However, such organizations would be able to support batch-capable SSI’s –
able to populate them dynamically, during the non-office-hours time periods.

Unfortunately, this methodology of dynamically scaling an SSI from a single
dedicated home node, out into the unused PC infrastructure of an organization,
doesn’t come without risk.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 8 of 24

3 Common, Technical Sense.

3.1 How openMosix Communicates

openMosix is not a true SSI, but it does communicate as one would.

All of the openMosix communications are client-server oriented. The service ports
are not well documented, but they can be found in the openMosix FAQ (online at
http://howto.ipng.be/openMosixWiki/index.php/FAQ);

Moshe says;
 “ openMosi x uses onl y UDP pr ot ocol por t s i n t he addr ess
r ange of 5000- 5700. "

l i nux/ i ncl ude/ l i nux/ mf s_socket . h
 MFS_MAI N_PORT 0xD302 == 723 (TCP)

l i nux/ hpc/ comm. c
 MI G_DAEMON_PORT 0x3412 == 4660 (TCP)
 I NFO_DAEMON_PORT 0x3415 == 5428 (UDP)

This translates to a set of filterable communications rules, like thus;

Cl i ent 1024: 65535 – UDP –> Ser ver 5000: 5700
Cl i ent 1024: 65535 – TCP –> Ser ver 723
Cl i ent 1024: 65535 – TCP –> Ser ver 4660

However, because one of the feature benefits of an SSI is its “single system” concept,
there is no such thing as a “slave” or a “master” node; each node in the cluster
essentially operating as peer. Unfortunately for the communications architecture, this
means that every node in the cluster must be able to communicate directly with every
other node in the cluster, with the same set of communications rules. This
architecture effectively rules out any type of dynamic NAT or “cluster gateway”
concepts.

Some or all of the services listed above will be available, depending on the compile-
time options used to create the openMosix-enabled kernel that is being executed.

The only native security applied to these services is a single compile-time option,
which if enabled, will prevent local or foreign connections to these services by hosts
not listed in the local node database. It is not clear at what level (or layer) this
filtering occurs, or by what means packets/connections are filtered.

3.2 How openMosix maintains its Node Database

The openMosix kernel works with a cluster “map”. This map can account for up to
65,535 nodes, via a construction of up to 255 objects – each object containing an
identifier, a base address and a count (of contiguously addressed hosts from the base).

The same map structure used in the Linux openMosix kernel is also used in the ascii
file /etc/openmosix.map.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 9 of 24

An example of this map file would be;

Exampl e / et c/ openmosi x. map

8 nodes; 192. 168. 1. 10- 14 and 192. 168. 1. 24- 26

i d base count
1 192. 168. 1. 10 5
2 192. 168. 1. 24 3

Natively, openMosix does not maintain this map itself. Instead, this is left to the
operating system and the tools provided. It can be either a static management scheme
via /etc/openmosix.map and “setpe” or a dynamic one via the auto discovery daemon
“omdiscd” .

What is important to note, is that any device in this map, is implicitly “ trusted” by
openMosix, and automatically assumed to be included into the SSI/cluster. Note, too,
that once a host is entered into the kernel’s map, the kernel will attempt to
communicate with the new node.

3.3 How omdiscd Operates

The openMosix auto discovery daemon is omdiscd, and is distributed with the
openMosix utilities. It works by sending a continuous stream of multicast “add me”
messages, while listening for the same.

The address/group and port can be found in the omdiscd source (net.h);

#i f ndef TESTI NG
#def i ne NET_MCAST_GROUP " 239. 192. 0. 1"
#el se
#def i ne NET_MCAST_GROUP " 239. 192. 0. 2"
#endi f
#def i ne NET_MCAST_PORT 1334

As it finds nodes advertising on that multicast group, omdiscd reads in the kernel’s
openMosix map, adds the new node, and writes the map back into the kernel. In this
way, it is virtually identical to the manual alteration of the /etc/openmosix.map file.

While the openMosix map uses arbitrary identifiers, the omdiscd process (which
needs a more predictable assignment method) takes the last two octets of the base
address, and uses that to assign a “unique” node id.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 10 of 24

4 Where the Problems Arise

4.1 Where to Place Trust?

In questioning or addressing the security issues in and around an SSI, the first thing
that must be understood is the trust relationships.

An SSI blurs the traditional boundaries between “ inside” and “outside” . Inside ends
up being the relationship between all nodes in the kernel’s openMosix map, and
outside is everything else.

Before considering any other issue, be aware that applying this concept to the bigger
picture (i.e. a context of the enterprise network, or even the Internet), assures that the
inside becomes a complex set of trust relationships that must be established amongst a
haze of anti-trust.

4.2 Implementation Vulnerability (Node Vulnerability)

It is well documented, within the Internet security community, that openMosix is not
safe to expose to the untrusted (public) network;

Dat e Repor t ed: 04/ 23/ 2002
Br i ef Descr i pt i on: MOSI X mal f or med packet deni al of ser vi ce
Ri sk Fact or : Low
At t ack Type: Net wor k Based
Pl at f or ms: Li nux ker nel Al l ver si ons, MOSI X 1. 5. 7,
 openMosi x 2. 4. 17
Vul ner abi l i t y : mosi x- mal f or med- packet - dos
X- For ce URL:
 ht t p: / / www. i ss. net / secur i t y_cent er / st at i c/ 8927. php

In return, the openMosix developers have made their position equally clear;

Dat e: 2002- 04- 26 10: 49
Sender : mosheb
Logged I n: YES
user _i d=6632

Thi s i s not a bug, but a f eat ur e of openMosi x. As a
pr i nci pl e secur i t y has t o be handl ed at t he per i met er of
t he cl us t er , not wi t hi n t he cl ust er .

Moshe

The denial of service attack listed here is still valid at the current release of
openMosix (2.4.22-1 at the time of writing).

Similarly, incompatibilities between openMosix Linux distributions have seen hosts
of the same kernel and openMosix versions consistently crashing one another. This
was later attributed to differing compile-time options; which, while “solved” ,
demonstrates that a number of critical vulnerabilities capable of corrupting the
running Linux kernel, still exist.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 11 of 24

4.3 Network Authentication (Cluster Node Addition)

The only practical way to manage the deployment of a large and dynamic SSI is via
auto discovery. However, omdiscd has two limitations that greatly impact upon the
risk and scalability of the SSI, in the enterprise;

1. There is no authentication mechanism utilised by omdiscd, prior to adding a
host to the kernel map. It is, therefore, a basic exercise to add an unauthorised
IP address into the cluster trust relationships. This adds an intolerable risk to a
processing device that is expected to handle an organization’s critical
information assets.

2. While not strictly a network authentication issue, but an issue that impacts
upon auto discovery; omdiscd’s use of multicast traffic creates two problems.
In the outset, most enterprises are not immediately equipped to route multicast
traffic, tending to limit auto discovery to a single LAN or VLAN.
Additionally, as will be seen in the next section, not communicating with each
node individually, at this early point, makes it difficult to add adequate
security improvements later.

Both of these “features” are implemented by design. Unfortunately, neither is
appropriate for the modern enterprise.

4.4 Network Confidentiality and Integrity (Cluster Communications)

As cluster network communications are really the stuff of dreams that are usually
found on the buses and backplanes of ordinary server systems, it is a fundamental
business requirement that they are very well protected in transit.

openMosix makes no effort to encrypt or validate data transferred between nodes.
And, relatively speaking, this is understandable. As has been seen from the previous
two issues, openMosix is openly designed without integrity checking, authentication
or data privacy protection in any area of its operation.

While it has not been publicly proven, theoretically, data and data fragments can be
sniffed and stolen from the wire, intercepted and corrupted, injected or modified.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 12 of 24

5 Moving Forward – Mitigating the Risks

5.1 What is CHAOS?

CHAOS is a CD or PXE based Linux and openMosix cluster distribution.

CHAOS is a 9Mbyte Linux distribution, fitting on a single business card sized
CDROM. The tiny disc boots any i586 class PC (that supports CD or PXE booting)
into a working openMosix node, without disturbing the contents of any local hard
disk. Ideal for large-scale ad-hoc clusters, once booted, CHAOS runs entirely from
memory. CHAOS aims to be the most compact, secure and straightforward
openMosix cluster platform available.

CHAOS is the supercomputer for your wallet.

5.2 What is ClusterKnoppix?

ClusterKnoppix is a modified Knoppix distribution, utilizing the openMosix kernel.

Knoppix is a Linux distribution that boots and runs entirely from CD. It runs a
complete Linux distribution, based on Debian, which includes recent software and
desktop environments, with programs such as Abiword, The Gimp, Konqueror,
Mozilla, and hundreds of other quality open source programs; compressed from
1.7Gbytes to fit on a 700Mbyte CD. Its default windows environment is KDE.

5.3 Redesigning the Auto Discovery Process (tyd)

The best place to begin to remedy the security issues identified in the previous section
is in the auto discovery process.

Ideally, the auto discovery daemon should act as a gatekeeper for the cluster. It
should connect to every node in the cluster, individually, when joining or leaving the
cluster, and should accept or decline requests from other nodes doing the same. Not
only does this circumvent the limited distribution of multicast (by utilizing unicast),
but it also provides an opportunity to negotiate authentication and encryption
transforms.

The authors of the CHAOS distribution created tyd and the “Terrence and Phillip”
protocol to resolve these very issues. Note though, that tyd does not perform all of
these tasks itself.

tyd uses unicast to connect to each node in the cluster, to negotiate node additions and
removals. This is done through the Terrence and Phillip protocol, where Terrence is a
client and Phillip is a server. Phillip has been designed with the arbitrary port
allocation of 3278/TCP – enabling a communications rule such as;

 Cl i ent 1024: 65535 – TCP –> Ser ver 3278

tyd starts as a Terrence. It connects to any node in the cluster (one that it is told
about), and retrieves a copy of the openMosix map, from that node. Figure 1
demonstrates the Terrence and Phillip protocol in practice, with the new host
requesting a copy of the cluster map from a given node in the cluster.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 13 of 24

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 14 of 24

Once tyd has successfully acquired a copy of the map as Terrence, it then continues
on to finish Terrence’s work, by connecting to each node in the cluster database,
asking to be added to the cluster.

Figure 2 shows how the new host requests to be added to the cluster, node by node.
In the diagram, Node 1 has already added the new host, allowing the new host to
move on to the next, and each, consecutive node until it has exhausted the cluster
map.

After tyd has successfully added its node to the last node in the cluster database, tyd
becomes Phillip. Phillip is completely passive; listening for new nodes (via their
Terrence connections), serving the cluster database, and adding nodes as requested.

However, tyd does not negotiate encryption, authentication or any other security
transforms. The Terrence and Phillip protocol makes no allowance for node
authentication – and on its own, provides no additional value outside of unicast
connectivity, over the existing omdiscd auto discovery process.

Instead, “per-host” hooks have been applied to sneakily offload these additional
functions to other best-practice security components – allowing tyd to perform
security actions, as nodes require them.

This offloading has made it relatively easy for other distributions, such as
ClusterKnoppix, to incorporate the new auto discovery daemon, and to adopt the
improved security features without significant impact.

5.4 IPSEC (Network Level Encryption and Authentication)

IP security (IPSEC) is probably the world’s most common Virtual Private Networking
(VPN) solution. IPSEC supports a wide variety of authentication and encryption
transforms, and, in its encapsulation mode, is capable of tunnelling all layer-3 (IP)
traffic between two endpoints.

The Linux 2.4 kernel series can be compiled with the FreeSWAN project source to
enable IPSEC in the kernel. Both CHAOS and ClusterKnoppix include the
FreeSWAN package within their respective kernels – along side of openMosix.

tyd enables network level authentication and encryption by dynamically working with
IPSEC in three key steps;

1. tyd hands a cluster-wide pre-shared key (PSK) off to IPSEC for authentication
on all connections.

2. tyd constructs a default “road warrior” IPSEC configuration, for new inbound
connections. This includes an authentication transform of the PSK (above), an
encryption transform of Triple DES (3DES), enables dynamic re-keying
through perfect forward security (PFS), and enables the compression
transform.

3. tyd creates one new IPSEC tunnel per Terrence connection (of the same
transforms as above), routes it and initiates it.

The net result is that no new node can begin to communicate with any existing cluster
node (even for the purposes of auto discovery) unless the new node is correctly
authenticated and appropriately encrypted. IPSEC goes some way to providing node

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 15 of 24

(host) integrity assurance through authorised network level access, and a long way to
assuring data confidentiality and integrity through network level encryption.

As can be seen in this section alone, by creating a unicast auto discovery process, it
becomes very easy to add network level security, on a per-host basis. And, more
importantly, this security is not user dependant; the default solution being a secure
solution makes it highly likely that any user deploying the solution will deploy it
securely.

Note, too, that by “sealing off” (tunnelling) these inter-node communications, the first
big step has been made in establishing “ inside” versus “outside” .

5.5 Establishing an “ Inside” and an “ Outside” (Definition)

While IPSEC has been used to create VPN tunnels between peers (nodes) in the
cluster, there has still not been a clear separation between the inside and outside of the
cluster.

What is inside? Recall that the node map (the cluster database) is a map of implicit
trust relationships; and that those hosts in the map are inside the cluster, leaving all
other hosts outside. The problem with this rule is that it is not defined specifically
enough, and that it does not allow a safe entry point for untrusted hosts.

As can be seen in figure 3, hosts in the cluster communicate both “ internally” – i.e. to
other nodes in the cluster – and “externally” to other network connected devices.
Therefore, not all communications that originate or terminate on cluster nodes are
truly internal to the cluster as a whole.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 16 of 24

The solution comes from section 3, where the cluster communications (or inter-node
communications) are defined. Adding a second dimension to the definition, and
exposing the real complication with the implicit trust relationships defined by
openMosix, is this;

• Inside is all openMosix (cluster) traffic that occurs between nodes in the
cluster map.

• Outside is everything else (including all non-openMosix traffic that occurs
between nodes in the cluster map).

What does this mean in practice? That the nodes in the cluster must be configured
such that only the known openMosix traffic is permitted between nodes in the cluster
database, and that this traffic is routed via the authenticated and encrypted VPN
tunnels;

Cl i ent 1024: 65535 – TCP –> Ser ver 3278
Cl i ent 1024: 65535 – UDP –> Ser ver 5000: 5700
Cl i ent 1024: 65535 – TCP –> Ser ver 723
Cl i ent 1024: 65535 – TCP –> Ser ver 4660

Furthermore, enabling the gate-keeping functionality of the auto discovery process, an
“air lock” style entry process can be created to allow new (untrusted) hosts into the
cluster safely;

1. The new host must establish a valid IPSEC tunnel to the node it seeks to
interrogate. Without this authentication, the new host remains untrusted, and
unable to acquire network level access to the cluster internals (including auto
discovery). This is a fundamental requirement for maintaining cluster
integrity.

2. Only once a valid IPSEC tunnel is established, should nodes then negotiate the
addition of the new host, into the cluster database. This second step is weak,
as tyd provides no native authentication. However, even without this
extension, the prerequisite of a negotiated entry into the cluster database above
and beyond layer-4 connectivity, adds defence in depth; the second round of
negotiations forcing any new host to completely satisfy entry requirements,
minimising abuse (even from nodes that may have had their PSK
compromised).

This process allows a successful host to first enter the internal network, gain visibility
to the gatekeeper, and then to negotiate its place in openMosix’s implicit trust
relationship database.

By the same token, unsuccessful or unwanted hosts are left so far outside of the
cluster internals, that they no longer have the ability to intercept, corrupt, inject or
modify SSI backplane traffic, or critical SSI services.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 17 of 24

5.6 Implementing “ Inside” and “ Outside” (Packet Filtering)

The practical application of this delineation is straight forward.

The Linux 2.4 kernel series incorporates the netfilter packet filtering engine. This
engine is relatively sophisticated, incorporating layer-4 connection tracking and a
mass of other features that are not required for this work.

For the application of this security suite, a host with a single interface (eth0) will be
assumed. The FreeSWAN IPSEC software associates a virtual IPSEC interface with
each physical interface – so an interface of ipsec0 will also be assumed. Every IPSEC
tunnel to or from this physical interface will route via the virtual interface. This
essentially means that the unencrypted traffic will enter and leave the local host via
ipsec0 and the “outside of the tunnel” (encrypted traffic) will enter and leave via eth0.

By definition, the eth0 traffic, then, should only be IPSEC traffic;

Cl i ent 500 – UDP –> Ser ver 500
Cl i ent – ESP –> Ser ver

Whereas ipsec0 should see all of the inter-node communications;

Cl i ent 1024: 65535 – TCP –> Ser ver 3278
Cl i ent 1024: 65535 – UDP –> Ser ver 5000: 5700
Cl i ent 1024: 65535 – TCP –> Ser ver 723
Cl i ent 1024: 65535 – TCP –> Ser ver 4660

Included here is a dump of the rules that were derived from above, as executed via
iptables from tyd, the auto discovery process.

1. First, flush the netfilter environment and add best practice rules;

- F
- F - t mangl e
- P I NPUT DROP
- P OUTPUT DROP
- A I NPUT - p t cp ! - - t cp- f l ags SYN, RST, ACK SYN - m st at e
 - - st at e NEW - j DROP
- A OUTPUT - p t cp ! - - t cp- f l ags SYN, RST, ACK SYN - m st at e
 - - s t at e NEW - j DROP

2. Add eth0 rules for IPSEC;

- A I NPUT - i et h0 - p 50
 - s 0. 0. 0. 0/ 0 - d 192. 168. 1. 87/ 32
 - j ACCEPT
- A OUTPUT - o et h0 - p 50
 - s 192. 168. 1. 87/ 32 - d 0. 0. 0. 0/ 0
 - j ACCEPT
- A OUTPUT - o et h0 - p udp
 - s 192. 168. 1. 87/ 32 - - spor t 500
 - d 0. 0. 0. 0/ 0 - - dpor t 500
 - j ACCEPT
- A I NPUT - i et h0 - p udp
 - s 0. 0. 0. 0/ 0 - - spor t 500
 - d 192. 168. 1. 87/ 32 - - dpor t 500
 - j ACCEPT
- A OUTPUT - o i psec0 - p udp
 - s 192. 168. 1. 87/ 32 - - spor t 500

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 18 of 24

 - d 0. 0. 0. 0/ 0 - - dpor t 500
 - j ACCEPT
- A I NPUT - i i psec0 - p udp
 - s 0. 0. 0. 0/ 0 - - spor t 500
 - d 192. 168. 1. 87/ 32 - - dpor t 500
 - j ACCEPT

Note the exception; that FreeSWAN’s IKE insists on transmitting via ipsec0.

3. Add ipsec0 rules for openMosix inter node communications;

- A I NPUT - i i psec0 - p t cp
 - s 0. 0. 0. 0/ 0 - - spor t 1024: 65535
 - d 192. 168. 1. 87/ 32 - - dpor t 3278
 - m st at e - - st at e NEW, ESTABLI SHED - j ACCEPT
- A OUTPUT - o i psec0 - p t cp
 - d 0. 0. 0. 0/ 0 - - dpor t 1024: 65535
 - s 192. 168. 1. 87/ 32 - - spor t 3278
 - m st at e - - st at e ESTABLI SHED - j ACCEPT
- A OUTPUT - o i psec0 - p t cp
 - s 192. 168. 1. 87/ 32 - - spor t 1024: 65535
 - d 0. 0. 0. 0/ 0 - - dpor t 3278
 - m st at e - - st at e NEW, ESTABLI SHED - j ACCEPT
- A I NPUT - i i psec0 - p t cp
 - d 192. 168. 1. 87/ 32 - - dpor t 1024: 65535
 - s 0. 0. 0. 0/ 0 - - spor t 3278
 - m st at e - - st at e ESTABLI SHED - j ACCEPT
- A I NPUT - i i psec0 - p udp
 - s 0. 0. 0. 0/ 0 - - spor t 1024: 65535
 - d 192. 168. 1. 87/ 32 - - dpor t 5000: 5700
 - m st at e - - st at e NEW, ESTABLI SHED - j ACCEPT
- A OUTPUT - o i psec0 - p udp
 - d 0. 0. 0. 0/ 0 - - dpor t 1024: 65535
 - s 192. 168. 1. 87/ 32 - - spor t 5000: 5700
 - m st at e - - st at e ESTABLI SHED - j ACCEPT
- A OUTPUT - o i psec0 - p udp
 - s 192. 168. 1. 87/ 32 - - spor t 1024: 65535
 - d 0. 0. 0. 0/ 0 - - dpor t 5000: 5700
 - m st at e - - st at e NEW, ESTABLI SHED - j ACCEPT
- A I NPUT - i i psec0 - p udp
 - d 192. 168. 1. 87/ 32 - - dpor t 1024: 65535
 - s 0. 0. 0. 0/ 0 - - spor t 5000: 5700
 - m st at e - - st at e ESTABLI SHED - j ACCEPT
- A I NPUT - i i psec0 - p t cp
 - s 0. 0. 0. 0/ 0 - - spor t 1024: 65535
 - d 192. 168. 1. 87/ 32 - - dpor t 723
 - m st at e - - st at e NEW, ESTABLI SHED - j ACCEPT
- A OUTPUT - o i psec0 - p t cp
 - d 0. 0. 0. 0/ 0 - - dpor t 1024: 65535
 - s 192. 168. 1. 87/ 32 - - spor t 723
 - m st at e - - st at e ESTABLI SHED - j ACCEPT
- A OUTPUT - o i psec0 - p t cp
 - s 192. 168. 1. 87/ 32 - - spor t 1024: 65535
 - d 0. 0. 0. 0/ 0 - - dpor t 723
 - m st at e - - st at e NEW, ESTABLI SHED - j ACCEPT
- A I NPUT - i i psec0 - p t cp
 - d 192. 168. 1. 87/ 32 - - dpor t 1024: 65535
 - s 0. 0. 0. 0/ 0 - - spor t 723
 - m st at e - - st at e ESTABLI SHED - j ACCEPT
- A I NPUT - i i psec0 - p t cp
 - s 0. 0. 0. 0/ 0 - - spor t 1024: 65535
 - d 192. 168. 1. 87/ 32 - - dpor t 4660

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 19 of 24

 - m st at e - - st at e NEW, ESTABLI SHED - j ACCEPT
- A OUTPUT - o i psec0 - p t cp
 - d 0. 0. 0. 0/ 0 - - dpor t 1024: 65535
 - s 192. 168. 1. 87/ 32 - - spor t 4660
 - m st at e - - st at e ESTABLI SHED - j ACCEPT
- A OUTPUT - o i psec0 - p t cp
 - s 192. 168. 1. 87/ 32 - - spor t 1024: 65535
 - d 0. 0. 0. 0/ 0 - - dpor t 4660
 - m st at e - - st at e NEW, ESTABLI SHED - j ACCEPT
- A I NPUT - i i psec0 - p t cp
 - d 192. 168. 1. 87/ 32 - - dpor t 1024: 65535
 - s 0. 0. 0. 0/ 0 - - spor t 4660
 - m st at e - - st at e ESTABLI SHED - j ACCEPT

For further examples and rule set specifics, download, run and observe the CHAOS
distribution in action.

5.7 Using a Fully-Meshed Virtual Topology

The native underlying communications architecture, utilised by openMosix, is a fully
meshed topology. What this means is that while nodes may reside on differing
subnets (or even differing continents within the public infrastructure), openMosix
requires the ability to directly communicate from any node, to any node, on its regular
communications services.

Figure 4 demonstrates this topology;

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 20 of 24

Typically, this isn’ t an issue. However, one of the problems that will arise in
enterprise-wide SSI deployments, particularly those that are ad-hoc, will be the
intervention required due to private (RFC 1918) addressing, and Network Address
Translation (NAT)-based security solutions (such as CISCO’s PIX).

Without the security methodology recommended in this paper, openMosix will
assume that it can directly connect to the IP address that it has in its cluster database.
This could be made to work, providing one of a number of static NAT options is
available at the problem site.

With the security methodology recommended in this paper, the problem still exists,
but an option to provide an additional layer of abstraction may exist also. It should be
possible to extend both the operating Linux kernel, and tyd, to incorporate the Layer-2
Tunnelling Protocol (L2TP). L2TP could be used to provide a virtual class-b network
– 65,535 addresses that would be RFC 1918 compliant – inside/on top of the IPSEC
tunnel mesh. However, for the illusion to be complete, the auto discovery process
would need to see what was going on behind the curtains (at least on the local node)
so that it could facilitate the mirage.

Needless to say, that this problem has not yet been encountered, or resolved, within
the community; but expect it to be there.

5.8 Putting it together – Rolling your own

The CHAOS distribution was designed to be elegant, simple and secure – to provide
the security solutions discussed in this paper for ad-hoc enterprise-wide SSI clusters.
Originally, CHAOS focused on CD distribution as the major deployment method, but
quickly migrated toward network capable booting methods (such as PXE), vastly
improving the deployment capabilities of the distribution, both in terms of automation
and flexibility.

Enterprise roll-outs are likely to be deployed by utilising existing desktop and SOE
management solutions, like IBM’s “Remote Deployment Manager (RDM), Intel’s
“LANDesk” , or Novell’s “ZENworks” ,

However, for those interested only in experimenting with the considerations proposed
in this paper, a better solution exists.

The ClusterKnoppix distribution has adopted the security solutions discussed in this
paper, by compiling-in the additional Linux kernel resources and adding tyd as an
alternate auto discovery process. ClusterKnoppix works well as a “home node” ; in
stark contrast to CHAOS, it is fully featured and very user friendly – including a self
configuring X-Windows desktop.

With the amount of flexibility available in the SSI deployment methodology(s), any
limitation in the practical deployment will probably stem from a given organization’s
operating environment, management tools or technical expertise. Modern equipment
with current management tools and practices should yield success.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 21 of 24

6 Conclusion
This white paper demonstrates the inherent risks that come from the SSI architecture,
its dependencies and trust relationships. So too, does it show how applying existing
best practice security methodologies, logically, to the SSI architecture, can mitigate
these risks.

Single System Images are still young. Their greatest user base is founded firmly in
the academic and research arenas; two institutions that are, traditionally, not security
focused. By providing good quality, open source tools, such as CHAOS and
ClusterKnoppix, these institutions will adopt good security practices unconsciously.

By making the security features second nature to the current user base, commercial
organizations – including multinational enterprise – looking to deploy SSI clusters in
untrusted enterprise networks, should be able to readily adapt and deploy SSI
technology when the SSI technology, itself, is ripe for the picking; rather than having
to wait for commercially sound practices to be applied to a technology that was
developed for dedicated and isolated (trusted) deployments.

Single System Images will revolutionize application deployment – it is hoped that this
paper has gone some distance to providing integrity and confidentiality assurance for
those organizations willing to take the first steps.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 22 of 24

7 References

7.1 Papers / Presentations

7.1.1 HPC Computing Applied to Business Applications

http://openmosix.sourceforge.net/Business_Applications_2003.pdf

Moshe Bar, 2003.

7.1.2 Turning a group of independent GNU/Linux workstations into an
(Open)Mosix cluster in an untrusted networking environment and surviving
the experience

http://www.democritos.it/events/openMosix/papers/cagliari.pdf

Giacomo Mulas, November 2002.

7.1.3 The El-Cheap-o Massively-Parallel Diskless After-5pm Super-Computer

http://office.sage-au.org.au/member-only/videos/sage-qld-1999-jun.avi

David Conran, June 1999.

7.2 Distributions

7.2.1 CHAOS

http://itsecurity.mq.edu.au/chaos/

7.2.2 ClusterKnoppix

http://bofh.be/clusterknoppix/

7.3 Software

7.3.1 FreeSWAN

http://www.freeswan.org/

7.3.2 Netfilter

http://www.netfilter.org/

7.3.3 openMosix

http://www.openmosix.org/

7.3.4 openSSI

http://www.openssi.org/

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 23 of 24

7.4 Fear, Uncertainty and Doubt

7.4.1 ISS: Security Center: X-Force Alerts and Advisories

http://xforce.iss.net/xforce/alerts/id/AS02-17

Internet Security Systems, April 2002.

7.4.2 Know Your Enemy: Statistics

http://project.honeynet.org/papers/stats/

HoneyNet Project, July 2001.

White Paper
Security and openMosix
Securely deploying SSI cluster technology over untrusted networking infrastructure

Unrestricted Distribution Copyright 2003, Macquarie University Page 24 of 24

8 Contact

8.1 Additions, Modifications and Deletions

For changes to this document, please refer to the author and revision history blocks in
the control page. Please report errors or omissions to the author.

8.2 Consultation

If you would like to discuss SSI security architecture or other concepts related to this
white paper, then please contact the author;

Ian Latter

IT Security Officer

Macquarie University, Australia.

Email: Ian.Latter@mq.edu.au

